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Abstract

We present a technique for the rapid and reliable prediction of linear-functional outputs of ellip-
tic (and parabolic) partial differential equations with affine parameter dependence. The essential
components are (i) (provably) rapidly convergent global reduced-basis approximations — Galerkin
projection onto a space Wy spanned by solutions of the governing partial differential equation
at N selected points in parameter space; (i) a posteriorti ervor estimation — relaxations of the
error-residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the
outputs of interest; and (i) off-line/on-line computational procedures — methods which decouple
the generation and projection stages of the approximation process. The operation count for the
on-linc stage — in which, given a new parameter value, we calculate the output of interest and
associated error bound — depends only on N (typically very small) and the parametric complexity
of the problem; the methad is thus ideally suited for the repeated and rapid evaluations required
in the context of parameter estimation, design, optimization, and real-time control.

1 Introduction

The optimization, control, and characterization of an engineering component or system requires the
prediction of certain “quantities of interest,” or performance metrics, which we shall denote outputs —
for example deflections, maximum stresses, maximum temperatures, lLieat transfer rates, flowrates, or
lift and drags. These outputs are typically expressed as functionals of ficld variables associated with
a parametrized partial differential equation which describes the physical behavior of the component or
system. The parameters, which we shall denote inputs, serve to identify a particular “configuration”
of the component: these inputs may represent design or decision variables, such as geometry — for
cxample, in optimization studies; control variables, such as actuator power — for example in real-
time applications; or characterization variables, such as physical properties — for example in inverse
problems. We thus arrive at an implicit input-output relationship, evaluation of which demands solution
of the underlying partial differential equation.

Qur goal is the development of computational methods that permit rapid and reliable cvaluation
of this partial-differcntial-equation-induced input-output relationship in the limit of many queries —
that is, in the design, optimization, control, and characterization contexts. The “many query” limit has
certainly received considerable attention: from “fast loads” or multiple right-hand side notions (e.g., [7,
9]) to matrix perturbation theories (e.g., [1, 28]) to continuation methods (e.g., (2, 23]). Our particular
approach is based on the reduced-basis method, first introduced in the late 1970s for nonlinear structural
analysis {3, 19], and subsequently developed more broadly in the 1980s and 1990s [5, 6, 10, 21, 22, 24].
The reduced-basis method recognizes that the ficld variable is not, in fact, some arbitrary member
of the infinite-dimensional solution space associated with the partial differential equation; rather, it
resides, or “evolves,” on a much lower—dimensional manifold induced by the parametric dependence.

The reduced-basis approach as earlier articulated is local in parameter space in both practice and
theory. To wit, Lagrangian or Taylor approximation spaces for the low-dimensional manifold are
typically defined relative to a particular parameter point; and the associated a priort convergence theory
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relies on asymptotic arguments in sufficiently small neighborhoods [10]. As a result, the computational
improvements - relative to conventional (say) finite element approximation - are often quite modest
[22]. Our work differs from these earlier efforts in several imiportant ways: first, we develop (in some
cases, provably) global approximation spaces; second, we introduce rigorous a posteriors error estimators;
and third, we exploit off-line/on-line computational decompositions (see [5] for an carlicr application
of this strategy within the reduced-basis context). These three ingredients allow us — for the restricted
but important class of “parameter-affine” problems — to reliably decouple the generation and projection
stages of reduced--basis approximation, thereby effecting computational economies of several orders of
magnitude.

In this expository review paper we focus on these new ingredients. In Section 2 we introduce an
abstract problem formulation and several illustrative instantiations. In Section 3 we describe, for coer-
cive symmetric problems and “compliant” outputs, the reduced -basis approximation; and in Secction 4
we present the associated a posterior error estimation procedures. In Section 5 we consider the exten-
sion of our approach to noncompliant outputs and nonsymumetric operators; eigenvalue problems; and,
more briefly, noncoercive operators, parabolic equations, and non-affine problems. A description of the
system architecture in which these numerical objects reside may be found in [26].

2 Problem Statement

2.1  Abstract Formulation

We consider a suitably regular domain ¢ RY d=1, 2 or 3, and associated function space X ¢
HY(Q), where H'(Q) = {v € L*(Q), Vv € (L2(Q))4}, and L?() is the space of square integrable
functions over §2. The inner product and norm associated with X are givenby (-, -)x and ||-|x = (-,-)/2,
respectively. We also define a parameter set D € R”, a particular point in which will be denoted 4.
Note that Q does not depend on the paramecter.

We then introduce a bilinear forma: X x X x D — R, and lincar forms f: X - R, ¢: X — IR,
We shall assume that a is continuous, a{w,v;u) < ~(u) lwliix flvllx < v lwlix lvllx, Ve € D;
furthermore, in Sections 3 and 4, we assume that ¢ is cocrcive,

0<ag< a(p) = inf a(w, w; 1)

oS ey THED M

and symmetric, a(w, v; p) = a(v, w; ), Vw,v € X, Vu € D. We also require that our linear forms f and
€ be bounded; in Sections 3 and 4 we additionally assume a “compliant” output, f(v) = &(v), Vv e X.

We shall also make certain assumptions on the parametric dependence of a, f, and £. In particular,
we shall suppose that, for some finite (preferably small) integer Q, a may be expressed as

Q
a(w,vig) = 3 o) a¥(w,v), VwweX, VpeD, (2)
q=1
forsomeo?: D—>Randa?: X xX >R, q=1,...,Q. This “separability,” or “affine,” assumption

on the parameter dependence is crucial to computational efficiency; however, certain relaxations are
possible — see Section 5.3.3. For simplicity of exposition, we assume that f and £ do not depend on “
mm actual practice, affine dependence is readily admitted.

Our abstract problem statement is then: for any u € D, find s(p) € R given by

s(p) = Eu(u)), (3)
where u(p) € X is the solution of
alu(u),v;pn) = f(v), YveX. (4)

In the language of the introduction, a is our partial differential equation (in weak form), u is our
parameter, u(u) is our field variable, and s(u) is our output. For simplicity of exposition, we may on
occasion suppress the explicit dependence on .
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2.2 Particular Instantiations

We indicate here a few instantiations of the abstract formulation; these will serve to illustrate the
methods {for cocrcive, symmetric problems) of Sections 3 and 4.

2.2.1 A Thermal Fin
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Figure 1: Two- and Three-Dimensional Thermal Fins.

In this example we consider the two- and three-dimensional thermal fins shown in Figure 1; these
examples may be (interactively) accessed on our web site!. The fins consist of a vertical central “post”
of conductivity k¢ and four horizontal “subfins” of conductivity k', i = 1,...,4. The fins conduct
heat from a prescribed uniform flux source §” at the root Ioot through the post and large-surface-
arca subfins to the surrounding flowing air; the latter is characterized by a sink temperature i and
prescribed heat transfer coefficient h. The physical model is simple conduction: the temperature ficld
in the fin, @, satisfies

4
Z/ ;Eiw.€76+/ h(a—ao)azf g9, VioeX=HY(Q, (5)
Ui BN Tro0e Troor

where €2; is that part of the domain with conductivity k' and 88 denotes the boundary of Q.

We now (i) nondimensionalize the weak equations (5), and () apply a continuous piecewise-affine
transformation from §! to a fixed (u-independent) reference domain € [15]. The abstract problem
statement (4) is then recovered for p = {k', k?, K%, k% Bi, L, t}, D = [0.1,10.0]* x [0.01,1.0] x
[2.0,3.0] x (0.1 x 0.5], and P = 7; here kY,..., k" are the thermal conductivitics of the “subfins” (see
Figure 1) relative to the thermal conductivity of the fin base; Bi is a nondimensional form of the heat
transfer coefficient; and, L, t are the length and thickness of each of the “subfins” relative to the length
of the fin root Troot. It is readily verified that a is continuous, coercive, and symmetric; and that the
“affine” assumption (2) obtains for Q = 16 (two-dimensional case) and Q = 25 (three-dimensional case).
Note that the geometric variations are reflected, via the mapping, in the o?(u).

For our output of interest, s(u), we consider the average temperature of the root of the fin nondi-
mensionalized relative to §”, k°, and the length of the fin root. This output may be expressed as

LFN2D: http://augustine.mit.edu/fin2d/fin2d.pdf and FIN3D: htt.p://augustine.mit4edu/ﬁn3d_1/ﬁan_l.ﬁdf
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s(ie) = L{u(p)), where £(v) = me.l v. It is readily shown that this output functional is bounded and
also “compliant”: {(v) = f(v), Vv € X.

2.2.2 A Truss Structure
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Figure 2: A Truss Structure

We consider a prismatic microtruss structure (8, 27) shown in Figure 2; this example may be (interac-
tively) accessed on our web site®. The truss consists of a frame (upper and lower faces, in dark gray)
and a core (trusses and middle sheet, in light gray). The structure transmits a force per unit depth
F uniformly distributed over the tip of the middle sheet Iy through the truss system to the fixed left
wall Iy. The physical model is simple plane-strain (two-dimensional) linear elasticity: the displacement

ficld u;, @ = 1,2, satisfics
0v; = Ouy P : .
—_— E‘i el T/ = — = y V X, G

where 2 is the truss domain, E:jkl is the elasticity tensor, and X refers to the set of functions in H1 (fl)
which vauish on Ty, We assume summation over repeated indices.

We now () nondimensionalize the weak equations (6), and (i) apply a continuous piccewise-affine
transformation from  to a fixed (#-independent) reference domain Q). The abstract problem state-
ment (4) is then recovered for u = {t, t,, H, 8},D = [0.08, 1.0] x [0.2,2.0] x [4.0,10.0] x {30.0°, 60.0°],
and P = 4; here ty and t, are the thicknesses of the frame and trusses (normalized relative to te),
respectively; H is the total height of the microtruss (normalized relative to tc); and 8 is the angle be-
tween the trusses and the faces. The Poisson’s ratio, ¥ = 0.3, and the frame and core Young’s modauli,
Ey =75 GPa and E, = 200 GPa, respectively, are held fixed. It is readily verified that a is continuous,
coercive, and symmetric; and that the “affine” assumption (2) obtains for Q = 44.

Our outputs of interest are (i) the average downward deflection (compliance) at the core tip, I's,
nondimensionalized by F /E’f; and (#) the average normal stress across the critical (vield) section
denoted I'{ in Figure 2. These compliance and noncompliance outputs can be expressed as s!{u) =
¢ (u(p)) and s*(u) = €2(u(p)), respectively, where €1 (v) = — Jr, v2, and

1 Ixi Ouy,
2(, = — —_— gy ——
- (U) ty Jos 5:1:_.,' ikl Oz,

are bounded linear functionals; here x; is any suitably smooth function in H 1(§2*) such that x;7; = 1
on I'f and x;7; = 0 on I'j, where 7 is the unit normal. Note that s'(u) is a compliant output, whereas

s%(u) is “noncompliant.”

?Truss: http://augustine.mit. edu/simple_truss/simple_truss.pdf
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3 Reduced-Basis Approach

We recall that in this section, as well as in Section 4, we assume that a is continuous, coercive, symmetric,
and affine in g — see (2); and that £(v) = f(v), which we denote “compliance.”

3.1 Reduced-Basis Approximation

We first introduce a sample in parameter space, Sy = {1, .- N}, where p; € D, i =1,...,N; see
Section 3.2.2 for a bricf discussion of point distribution. We then define our Lagrangian [22] reduced-
basis approximation space as Wy = span {{, = u(ga), n=1,..., N3}, where u(y,) € X is the solution
to (4) for i = pin. In actual practice, u(t,,) is replaced by an appropriate finite clement approximation
on a suitably fine truth mesh; we shall discuss the associated computational implications in Section 3.3.
Ouwr reduced-basis approximation is then: for any p € D, find sy (p) = Llun (1)), where upn(p) € Wy
is the solution of

aluy (p),v;p) = ), YveEWn. (7

Non-Galerkin projections are briefly described in Section 5.3.1.
3.2 A Priori Convergence Theory

3.2.1 Optimality

We consider here the convergence rate of up (2) — u(p) and sy(u) — s(p) as N — co. To begin, it is
standard to demonstrate optimality of uy(p) in the sense that

v(p)
a(p) w

() — un(p)lix < inf lu(p) —wnlix (8)
NEWYN

(We note that, in the coercive case, stability of our (“conforming”) discrete approximation is not an issue;
the noncoercive case is decidedly more delicate {sce Section 5.3.1).) Furthermore, for our compliance
output,

s(w) = sy (1) + £(u —un) = sw(p) +alu,u — unip) = sy (p) + a(u - un,u —un;p) 9)

from symmetry and Galerkin orthogonality. It follows that s{) — sy (p) converges as the square of the
error in the best approximation and, from coercivity, that sy () is a lower bound for s{y).

3.2.2 Best Approximation

It now remains to bound the dependence of the crror in the best approximation as a function of N. At
present, the theory is restricted to the case in which P =1, D = [0, ftmax), 2nd

a(w,v; 1) = ap(w,v) + pai(w,v), (10)

where ay is continuous, coercive, and symmetric, and ay is continuous, positive semi-definite (a1 (w,w) >
0,Yw € X), and symmetric. This model problem (10) is rather broadly relevant, for example to variable
orthotropic conductivity, variable rectilinear geometry, variable piecewise-constant conductivity, and
variable Robin boundary conditions.

We now suppose that the g, n=1,..., N, are logarithmically distributed in the sense that

-1
-1

— n _
ln(/\u,,+1):N In (N pmax +1), n=1,...,N, (11)
where X is an upper bound for the maximum eigenvalue of a; relative to ap. (Note X is perforce bounded
thanks to our assumption of continuity and coercivity; the possibility of a continuous spectrum does
not, in practice, pose any problems.) We can then prove [18] that, for N > Nee = eln(X poux + 1),

_ing ) ~ w0l < (1 i ) O ex0 {(—‘Nﬁv%?)} vueD.  (12)
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N | dslpw) = sw(p)l/s(w) | An()/s(s) | 1w ()
10 1.29 x 1072 8.60x 10771 2385
20 1.29 x 103 936 x 1073 | 2.76
30 5.37 x 1074 4.25 x 1073 | 2.68
40 8.00 x 1075 530 x 1074 | 2.86
50 3.97 x 10°° 297Tx 1074 | 2.72
60 1.34 x 10™° 1.27 x 10=4 | 254
70 8.10 x 10°° 7.72x107% | 253
80 2.56 x 10~8 2.24 x 1075 | 2.59

Table 1: Error, error bound (Method I), and effectivity as a function of N, at a particular representative
point i1 € D, for the two-dimensional thermal fin problem (compliant output).

We observe expouential convergence, uniformly (globally) for all p in D, with only very weak (loga-
rithmic) dependence on the range of the parameter (pay). (Note the constants in (12) are for the
particular case in which (-, ) x = ao(-,-).)

The proof exploits a parameter-space {non-polynomial) interpolant as a surrogate for the Galerkin
approximation. As a result, the bound is not always “sharp”: we observe many cases in which the
Galerkin projection is considerably better than the associated interpolant; optimality (8) chooses to
“illuminate” only certain points i, antomatically sclecting a best “sub-approximation” amongst all
(combinatorially many) possibilities — we thus see why reduced-basis state-space approximation of
$(u) via u(p) is preferred to simple parameter-space interpolation of s(u) (“connecting the dots”) via
(kns s(pa)) pairs. We note, however, that the logarithmic point distribution (11) implicated by our
interpolant-based arguments is not simply an artifact of the proof: in munerous numerical tests, the
logarithmic distribution performs considerably (and in many cases, provably) better than other more
obvious candidates, in particular for large ranges of the parameter. Fortunately, the convergence rate
is not toe sensitive to point selection: the theory only requires a log “on the average” distribution {18];
and, in practice, A need not be a sharp upper bound.

The result (12) is certainly tied to the particular form (10) and associated regularity of w(u). How-
ever, we do observe similar exponential behavior for more general operators; and, most importantly, the
exponential convergence rate degrades only very slowly with increasing parameter dimension, P. We
present in Table 1 the error [s(u) — sn(u)|/s(x) as a function of N, at a particular representative point
p in D, for the two-dimensional thermal fin problem of Section 2.2.1; we present similar data in Ta-
ble 2 for the truss problem of Section 2.2.2. In both cases, sirice tensor-product grids are prohibitively
profligate as P increases, the p,, are chosen “log-randomly” over D: we sample from a multivariate
uniform probability density on log(u). We observe that, for both the thermal fin (P = 7) and truss
(P = 4) problems, the error is remarkably small even for very small N; and that, in both cases, very
rapid convergence obtains as N — oo. We do not yet have any theory for P > 1. But certainly the
Galerkin optimality plays a central role, automatically sclecting “appropriate” scattered-data subscts
of Sy and associated “good” weights so as to mitigate the curse of dimensionality as P increases; and
the log-random point distribution is also important — for example, for the truss problem of Table 2, a
non-logarithmic uniform random point distribution for Sy yields errors which are larger by factors of
20 and 10 for NV = 30 and 80, respectively.

3.3 Computational Procedure

The theoretical and empirical results of Sections 3.1 and 3.2 suggest that N may, indeed, be chosen
very small. We now develop off-line/on-line computational procedures that exploit this dimension
reduction.
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N T ls() = sn(l/s(p) | An(u)/s(w) | nn()
10 3.26 x 10°2 6.47 x 1072 | 1.98
20 2.56 x 1074 4.74 x 10~¢ 1.85
30 7.31 x 1078 1.38 x 10~4 1.89
40 1.91 x 1078 3.59x 107° | 1.88
50 1.09 x 1078 208 x107% | 1.90
60 4.10 x 106 8.19x 107% | 2.00
70 2.61 % 10~ 592 % 107% | 2.00
80 1.19 x 1076 239 x 1076 | 2.00

Table 2: Error, error bound (Method II), and effectivity as a function of N, at a particular representative
point g € D, for the truss problem (compliant output).

We first express uy(g) as

N
un() =D un (8 ¢ = an () ¢ (13)
j=1
where 1y (1) € RY; we then choose for test functions v = (i, 2= 1, .. ., N. Inserting these representa-
tions into (7) yields the desired algebraic equations for uy(p) € R¥,
An(p) un(p) = Ly, (14)

in terms of which the output can then be evaluated as sy{p) = F% upn(p). Here Ay(p) € RV*N is
the SPD matrix with entries An; (1) = a(¢5, Gip), 1 < 4,5 < N, and 'y € RY is the “load” (and
“output™) vector with entries Fiv; = fl¢),i=1,...,N.

We now invoke (2) to write

Q
Anii(p) = a(G, Gy =y 0%(1) a®(G G) (15)

9=1

or

Q
Ay(p) =) o'(w) A%
g=1

where the Ay € RN*N are given by A‘}\,i'j =a9(¢,6), 1<, <N, 1<g2 Q. The off-line/on-line
deconmposition is now clear. In the off-line stage, we compute the u(p,,) and form the A% and Fy: this
requires N (expensive) “a” finitc element solutions and O(QN?) finite-element-vector inner products.
In the on-line stage, for any given new p, we first form Ay from (15), then solve (14) for up (), and
finally evaluate sy (u) = FL up(p): this requires O(QN?) + O(%Na) operations and O(QN?) storage.

Thus, as required, the incremental, or marginal, cost to evaluate sy(u) for any given new u — as
proposed in a design, optimization, or inverse-problem context — is very small: first, because N is very
small, typically O(10) — thanks to the good convergence properties of Wy ; and second, because (14)
can be very rapidly assembled and inverted — thanks to the off-line/on-line decomposition (see [5] for
an earlier application of this strategy within the reduced-basis context). For the problems discussed
in this paper, the resulting computational savings relative to standard (well-designed) finite-clement
approaches are significant — at least O(10), typically 0O(100), and often O(1000) or more.

4 A Posteriori Error Estimation: Output Bounds

From Section 3 we know that, in theory, we can obtain sy (u) very inexpensively: the on-line compu-
tational effort scales as O(%NB) 4+ O(QN?); and N can, in theory, be chosen quite small. However, in
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practice, we do not know how siall N can be chosen: this will depend on the desired accurucy, the
sclected output(s) of interest, and the particular problem in question; in some cases N = 5 may suffice,
while in other cases, N = 100 may still be insufficient. In the face of this uncertainty, either too many
or too few basis functions will be retained: the former results in computational inefficiency; the latter
in unacceptable uncertainty — particularly egregious in the decision contexts in which reduced-lasis
methods typically serve. We thus need a posteriori error estimators for Sn- Surprisingly, a posteri-
ori error estimation has received relatively little attention within the reduced basis framework (19],
even thougli reduced-basis methods are particularly in need of accuracy assessment: the spaces are
ad hoc and pre-asymptotic, thus admitting relatively little intuition, “rules of thumb,” or standard
approximation notions.

Reeall that, in this section, we continue to assume that a is coercive and symmetric, and that ¢ is
“compliant.”

4.1 Method I

The approach described in this section is a particular instance of a general “variational” framework for
a posteriori error estimation of outputs of interest. However, the reduced-basis instantiation described
here differs significantly from carlier applications to finite clement discretization error [16, 14] and
iterative solution error [20] both in the choice of {energy) relaxation and in the associated coniputational
artifice.

4.1.1 Formulation
We assume that we are given a positive function 9(#) : D — R, and a continuous, coercive, syminetric
(#-independent) bilinear form @ : X x X — R, such that
alvlk < o) a(v,v) < a(v,v4), YveX,VueD (16)
for some positive real constant ;. We then find é(u) € X such that
o) 8(e(),v) = R(vun(u)ip), We X, a7)

where for-a given w € X, R(v;w; p) = €(v) — a(w, v; i+) is the weak form of the residual. Our lower and
upper output estimators are then evaluated as

sn(i) = sw(w), and sh(k) = sw(p) + Aw(p), (18)

respectively, where
An(u) = g(u) a(é(n), é(u)) (19)

is the estimator gap.

4.1.2 Properties

We shall prove in this section that sy (u) < s(u) < st{(u), and hence that Is() — sn(p)| = s(u) —
sn(p) € An(u). Our lower and upper output estimators are thus lower and upper output bounds; and
our output estimator gap is thus an output bound gap — a rigorous bound for the error in the output
of interest. It is also critical that Ay (u) be a relatively sharp bound for the true error: a poor (overly
large) bound will encourage us to refine an approximation which is, in fact, already adequate — with
a corresponding (unnecessary) increase in off-line and on—line computational effort. We shall prove in
this section that Ay (p) < g%(s(,u) —~ sn(p)), where yo and o are the N-independent a-continuity and
g(jt)a-coercivity constants defined earlier. Our two results of this section can thus be summarized as

1 < nn(p) < Const, VN, (20)
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where

An(p)
s(p) —sw (1)
is the effectivity, and Const is a coustant independent of N. We shall denote the left (bounding
property) and right (sharpness property) incqualitics of (20) as the lower effectivity and upper effectivity
inequalities, respectively.

We first prove the lower cffectivity inequality (bounding property): sy (1) < s{u) < shn), Yne D,
for sy () and st (1) defined in (18). The lower bound property follows directly from Section 3.2.1. To
prove the upper bound property, we first observe that R(v; un; p) = a(u(p)—un(p),v; ) = ale(p), v; p),
where e(u) = u(j) — un(p); we may thus rewrite (17) as g{u)a(é(n), v) = ale(u),v;pe) Vv € X. We
thus obtain

nn(w) = (21)

g(p)a(é,e) = g(u)a(é —e,é —e) +2g9(u)a(é,e) — g(p)ale, e)
= g(u)a(é - e,é—c) + (ale,e; ) — g(p)ile, e)) + ale, &5 1)
> ale,e; ) (22)

1), 8(p) — e(p)) = 0 and a(e(p), e(p); 1) — 9() ae(p),e(p)) = 0 from (16).
we then obtain s(u) — sy(u) = ale{n), e(p); 1) < g(p) a(é(u), é(2)); and thus
(6(1),£() = 5t (1), s desired.

upper effectivity incquality (sharpness property):

An(p) o
e S

since g(u) a(é(u) — e(y
Invoking (9) and (22

s(u) < snlw) +9(p)
We next prove th

)
e
n(p) =

To begin, we appeal to a-continuity and g(u)d-coercivity to obtain

el étsin) < 22 ata(u), o) (23)

But from the modified error equation (17) we know that g(p)a(é(p), é(p)) = R(&(u); ) = ale(p), €(pe); 1)
Invoking the Cauchy-Schwartz inequality, we obtain

1/2
sra 5 5 A Yo Ars s
g(wa(e,8) = ale,&p) < (a(6&u) (ale,e;1)? < (a—> (9(n) a(e, &))" (ale, &5 )V
=0

the desired result then directly follows from (19) and (9).

We now provide empirical evidence for {(20). In particular, we present in Table 1 the bound gap and
effoctivities for the thermal fin example. Clearly ny(p) is always greater than unity for any N, and
bounded — indeed, quite close to unity — as N — oo.

4.1.3 Computational Procedure

Finally, we turn to the computational artifice by which we can efficiently compute Ay (1) in the on-line
stage of our procedure. We again exploit the affine parameter dependence, but now in a less transparent
fashion. To begin, we rewrite the “modified” error equation, (17), as

a(@(u)v) = —os ((v) ZZaq wun ;(1)a?(Gv )), Vve X,

g=1j=1
where we have appealed to our reduced-basis approximation (13) and the affine decomposition (2). It

is immediately clear from linear superposition that we can express é(u) as

Q

N
o) = — [ 20+ 30 S ot wun (w3 | | (24)

9() pr st
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where Z; € X satisfies a(Z,v) = £(v), Vv € X, and dle X,j=1,...,N, ¢ =1,...,0Q, satislics
a(2f,v) = —a%(¢;,v), ¥ v € X. Inserting (24) into our cxpression fox the upper bound shp) =
sn (i) + g(1)a(ése), ¢(11)), we obtain

Q Q N N
s',t(H) =sn(p )+-—< co+2 Z Zoq (hun {p )A:’ + Z Z Z qu(ﬂ)gql(#)ul’\/j(#)ul\u (,LL)F‘” >

q=1j=1 9=lg¢'=1j=1j'=1
(25)
where ¢g = a(o, 20), A = a(Z, 2 z{), and I’;’;’,’ = a(zj, zj’)
Thp off»hue/on~lme decomposition should now be clear. In the off-line stage we compute 33 aud
,i=1,...,N,qg=1,...,Q, and then form co, AY, and I‘” : this requires QN + 1 (expensive) “a”
ﬁmte elemeut solutions, and O(QQNQ) finite-element-vector inner products. In the on-line stage, for

any given new u, we evaluate s}, as expressed in (25): this requires O(Q*N?) operations and O(Q*N?)
storage (for ¢, A;’-, and I‘g;?,). As for the computation of sy(x), the marginal cost for the computation
of s[iv(,u) for any given new p is quite small — in particular, it is independent of the dimension of the
truth finite clement approximation space X.

There are a variety of ways in which the off-line/on-line decomposition and output crror bounds
can be exploited. A particularly attractive mode incorporates the error bounds into an on-line adaptive
process, in which we successively approximate sy (i) on a sequence of approximation spaces WN:
IVN,N’ Ng2? — for example, WNr may contain the N’ sample points of Sy closest to the new p of
111Lelest - until ANI is less than a specxﬁed error t,olercmc«, This procedure both minimizes the on-line
computational effort and reduces conditioning problems — while simultancously ensuring accuracy and
certainty.

The essential advantage of the approach described in this section is the guarantee of rigorous bounds.
There are, however, certain disadvantages. The first set of disadvantages relates to the choice of g(p) and
a. In many cases, simple inspection suffices: for example, in our thermal fin problem of Section 2.2.1,
g(pn) = ming=y,_ o 0%(p) and a{w,v) = Zqul a(w,v) yields the very good effectivities summarized
in Table 1. In other cases, however, there is no self-evident (or readily computed {17]) good choice: for
example, for the truss problem of Sectlon 2.2.2, the existence of almost-pure rotations renders g(u) very
small relative to (), with corresponding detument to n(1). The second set of disadvantages relates
to the computational expense — the O(Q) off-line and the O(Q?) on-line scaling induced by (24) and
(25), respectively. Both of these disadvantages are eliminated in the “Method II” to be discussed in
the next section; however “Method II” only provides asymptotic bounds as N — oo. The choice thus
depends on the relative importance of absolute certainty and computational efficiency.

4.2 Method I1

As already indicated, Method I has certain limitations; we discuss here a Method II which addresses
these limitations — albeit at the loss of complete certainty.

4.2.1 Formulation

To begin, we set M > N, and introduce a parameter sample Sp; = {p1,...,up} and associated
reduced-basis approximation space Wy = span {{m = u(pm), m = 1,..., M} ; for both theoretical and
practical reasons we require Sy C Sy and therefore Wy C Wy The procedure is very simple: we first
find upr(p) € Wiy such that aus(p),v;p) = f(v),V v € Wyy; we then evaluate spup) = lunm(p));
and, finally, we compute our upper and lower output estimators as

sy (k) =sn(w), sy () = sw(p) + B m(p), (26)

where Ay pr(pe), the estimator bound gap, is given by

Bnar(i) = = (spal) = s () (21)
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for some 7 € (0,1). The effectivity of the approximation is defined as

Anarlp)

S00) — sn () 28)

nn o p) =
For our purposes here, we shall consider M = 2N.

4.2.2 Properties

As for Method I, we would like to prove the effectivity inequality 1 < nnan () < Const, VN. However,
we will only be able to demonstrate an asymptotic form of this inequality. Furthermore, the latter shall
require — and we shall make — the hypothesis that

s() —sav ()

Gy s 0w e (29)

enan(p) =

We note that the assumption (29) is certainly plausible: if our a priori bound of (12) in fact reflects
asymptotic behavior, then s(u) — sy () ~ cre=2N | s(p) — san(p) ~ cre~ 22l
e~V as desired.

We first prove the lower effectivity inequality (bounding property): sy on (1) < s(p) < s]f,‘QN(/t), as
N — co. To demonstrate the lower bound we again appeal to (9) and the coercivity of ; indeed, this
result (still) obtains for all N. To demonstrate the upper bound, we write

, and hence ey an(p) ~

) = o (1) (500 = swe) = 000) ~ sam () (30)

ot (51 ~ewan(u)] - 1) (s(2) — sn (). (31)

We now recall that s(p) — sy(p) > 0, and that 0 < 7 < 1 — that is, 1/7 > 1; it then follows from (31)
and our hypothesis (29) that there exists a finite N* such that

ston(#) = s(p) 20, VN >N (32)

This concludes the proof: we obtain asymptotic bounds.
We now prove the upper effectivity inequality (sharpness property). From the definitions of iy on (1),
Anan(p) and enan(p), we directly obtain

_ Lson() —sn(w) _ 1 (san () = s()) — (swlp) — s(p))
anan(p) = T s(p) — sw (k) T (s(pe) — sn{p)) )
= (- ewan() (34

It is readily shown that 5y 2w (x) is bounded from above by 1/7 for all N: we know from (9) that
enan(p) is strictly non-negative. It can also readily be shown that n2n(g) is non-negative: since
Wy C Wan, it follows from (8) (for (-, ) x = al:,-;u)) and (9) that s(p} > sanv (1) 2 sn(p), and hence
enan{u) < 1. We thus conclude that 0 < gy on(p) < 1/7 for all N. Furthermore, from our hypothesis
on ey an (), (29), we know that nn 2 (1) will tend to 1/7 as N increases.

The essential approximation enabler is exponential convergence: we obtain bounds even for rather
small N and relatively large 7. We thus achieve both “near” certainty and good effectivities. We
demonstrate this claim in Table 2, in which we present the bound gap and effectivity for our truss
example of Section 2.2.2; the results tabulated correspond to the choice 7 = 1/2. We clearly obtain
bounds for all N; and we obscrve that iy oy (u) does, indeed, rather quickly approach 1/7.
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4.2.3 Computational Procedure

Since the error bounds are based entirely on evaluation of the output, we can directly adapt the off-
line/on-line procedure of Section 3.3. Note that the calculation of the output approximation sy(u)
and the output bounds are now integrated: Ay (1) and Fy(y) (yielding sy (1)) are a sub-matrix and
sub-vector of Ay (1) and Fon () (yielding son (), Ayon(i), and s,iv‘,zN(/J)), respectively. In the
off -line stage, we compute the u(y,) and form the A3y and £,y: this requires 2N (expensive) “a”
finite clement solutions, and O(4QN?) finite-element-vector inner products. In the on-line stage, for
any given new p, we first form Ay (), Fy and Ay (), Fyy, then solve for uy (u) and Ugp{p), and
finally evaluate sf,‘._,N(y): this requires O(4QN?) + O(XE N3) operations and O(4QN?) storage. The
ou-line effort for this Method II predictor/error estimator procedure (based on sy (u) and san () will
thus require eightfold more operations than the “predictor-only” procedure of Section 3.

Method II is in some sense very naive: we simply replace the true output s{g) with a finer—
approximation surrogate sy (u). (There are more obscure ways to describe the method — in terms of a
reduced -basis approximation for the error — however there is little to be gained from these alternative
interpretations.) The essential computation enabler is again exponential convergence, which permits
us to choose M = 2N -— hence controlling the additional computational effort attributable to error
estimation - - while simultancously cusuring that ey on () tends rapidly to zero. Exponential conver-
gence also ensures that the cost to compute both sy (1) and son(p) is “negligible.” In actual practice,
since son(u) is available, we can of course take spn(u), rather than sn(p), as our output prediction;
this greatly improves not only accuracy, but also certainty — A N2~ () is almost surely a bound for
s(pe) — san{p), albeit an exponentially conservative bound as N tends to infinity.

5 Extensions

5.1 Noncompliant Outputs and Nonsymmetric Operators

In Sections 3 and 4 we formulate the reduced-basis method and associated error estimation procedure
for the case of compliant outputs, (v) = f(v), Vv € X. We briefly summarize bere the formulation
and theory for more general linear bounded output functionals; moreover, the assumption of symmetry
(but not yet coercivity) is relaxed, permitting treatment of a wider class of problems — a representative
example is the convection-diffusion equation, in which the presence of the convective term renders the
operator nonsymmetric. We first present the reduced-basis approximation, now involving a dual or
adjoint problem; we then formulate the associated a posteriori error estimators; and we conclude with
a few illustrative results.

As a preliminary, we first generalize the abstract formulation of Section 2.1. As before, we define the
“primal” problem as in (4), however we of course no longer require symmetry. But we also introduce
an associated adjoint or “dual” problem: for any p € X, find 4%(i) € X such that

a(v,(p)in) = ~€(v), YwveX; (35)

recall that £(v) is our output functional.

5.1.1 Reduced-Basis Approximation

To develop the reduced-basis space, we first choose — randomly or log-randomly as described in Sec-
tion 3.2 — a sample set in parameter space, Sy/p = {B1,..- uns2}, where pu; € D, i =1,...,N/2
(NV even); we next define an “integrated” Lagrangian reduced-basis approximation space, Wy =
span {(u(pn), ¥(ua)), n=1,...,N/2}.

For any u € D, our reduced basis approximation is then obtained by standard Galerkin projection
onto Wy (though for highly nonsymmetric operators minimum residual and Petrov-Galerkin projections
are attractive — stabler — alternatives). To wit, for the primal problem, we find un(p) € Wy such
that aun(u),v;p) = f(v), Yv € Wy; and for the adjoint problem, we define (though, unless otherwise
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indicated, do not compute) 9 (1) € Wy such that a(v, ¥ (u); ) = —€(v), Yo € Wx. The reduced-
basis output approximation is then caleulated from sy(p) = Llun(p)).

Turning now to the a priori theory, it follows from standard arguments that up (jr) and ¥y (u) are
“optimal™ in the sense that

() - un(mllx < (1 + %&%) mNilEl‘va flu(u) = wallx,
<1 n M) ind 190 — wallx.

a(p) ) wneWs

The best approximation analysis is then similar to that presented in Section 3.2. As regards our output,
we now have

(n) = va ()llx

IN

()= ()] = 1)) —(un ()] = la(u—un, i )] = la(u—un, b=thws ] < vollu—runllx —vwlx

{36
from Galerkin orthogonality, the definition of the primal and the adjoint problems, and the Cauczhy?
Schwartz inequality. We now understand why we include the ¥(p) in Wy to ensure that |Jo(;e) —
Y (p)]lx is small. We thus recover the “square” effect in the convergence rate of the output, albeit
(and unlike the symmetric case) at the expense of some additional computational cffort — the inclusion
of the 1(p,) in Wy; typically, even for the very rapidly convergent reduced-basis approximation, the
“fixed error-minimum cost” criterion favors the adjoint enrichment.

For simplicity of exposition (and to a certain extent, implementation), we present here the “inte-
grated” primal-dual approximation space. However, there are significant computational and condition-
ing advantages associated with a “non-integrated” approach, in which we introduce separate primal
(u(pn)) and dual (¥ (i) approximation spaces for u(p) and ¥(u), respectively. Note in the “non-
integrated” case we arc obliged to compute (), since to prescrve the output error “square effect”
we must modify our predictor with a residual correction, f(n (1)) —a(un (1), ¥~ (1); 1) [17]. Both the
“integrated” and “non-integrated” approaches admit an off-line/on-line decomposition similar to that
deseribed in Section 3.3 for the compliant, symmetric problem; as before, the on~line complexity and
storage are independent of the dimension of the very fine (“truth™) finite element approximation.

5.1.2 Method I A Posteriort Error Estimators

We extend here the method developed in Section 4.1.2 to the more general case of noncompliant and
nonsymmetric problems. We begin with the formulation.
We first find éP*(u) € X such that

g(p) (e (), v) = R (viun (u)im), Vv € X,
where RV (v;w; ) = f(v) — a{w,v; ), ¥ v € X; and £9u(u) € X such that
g(w)a(e® (), v) = R (v 9w (p)ip), Y v € X,

—8(v) — a(v,w; ),V v € X. We then define

i

where R (v;w; 1)
_ GUL) o sdu
sv() = awlp) - Da(er (), 6% (), and (37)
9 (o sprp oy spre 1Y (a0 ; :
An(p) = =5 1a@E (u), e (W) [a(e®* (), e™ (] * (38)
Finally, we evaluate our lower and upper estimators as 5% (u) = 5w (k) £ An(p). Note that, as before,
g(u) and & still satisfy (16); and that, furthermore, (16) will only involve the symmetric part of a. We

define the effectivity as
An(p
nn(p) = | )

S —sn (@)’ (39)
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note that s(u) — sy {u) now has no definite sign.

We now prove that our error estimators are bounds (the lower effectivity inequality): sy (p) <
s(u) < sh(n), Vv N. To begin, we define et () = éP' () Lédu(y), and note that, from the coercivity
of a,

. 1, 1, - K et R .
ﬁg(;z)a(ep’ _ _ei)epr _ aei) — Rg(u)a(em’epr) + _gTii)a(ei,ei) _ ng(,u)a(et,ep‘) >0, (40)
where e* (1) = u(u) — un (1), e (u) = P(u) ~ Yv (i), and & is a positive real number. From the
definition of é¥(u) and 67 (y), 9% (n), we can express the “cross-term” as

. e 1 1
9()a(E*, ") = RP(cPun;p) F R ;1) = a(e™, e ) F ~ale, e i)
P I
) 1
= a(e‘”,ﬁ'”;u)i;(3(/1)*-5'N(#)), (41)
since RP"(CP";uN;u) = a(u, e pu) — aluy, e u) = a(eP’, e’ 1), Rd“(ep“;wN;u) = a(eP ;) —

a(e”, piv;p) = a(e?,eip), and L) - flun) = ~a(u — uy,Pip) = —a(u — un, P — ;i) (by
Galerkin orthogonality) = —a(eP,ed"; 11). We then substitute (41) into (40) to obtain

({00 ~ s (1)) S 5 (ale, 7 ) = galer, ) + L gat gy < 90t n

since & > 0 and a(eP"(u), €P" (u); 1) — g(p)a(eP (i), eP (1)) > 0 from (16).
Expanding é*(u) = éP7(u) '—lééd“(y) then gives

+(s(u) — sn () < 9—(4_)- [ﬁ&(épr,épr) + %&(éd”,éd“) F 2a(e", ey
(00 - (o) - %‘laéf’*yéd“))) < S0 g o o) 4 LB g gy (12)

We now choose x{u) as

) = (Ao}

(€Pe (), évr(u))
$0 as to minimize the right-hand side (42); we then obtain
Is(u) = Sn()l < An(u), (43)

and hence sy (u) < s(u) < sf(n).

We now turn to the upper effectivity inequality (sharpness property). If the primal and dual errors
are a-orthogonal, or become increasingly orthogonal as N increases, then the effectivity will not, in
fact, be bounded as N — co. However, if we make the (plausible) hypothesis that [s(u) — sn(p) >
ClleP ()l xle™ (w)]l x, then it is simple to demonstrate that

73
an(p) < =2
(k) < 2C o4 (44)

In particular, it is an easy matter to demonstrate that g'/2(u) (& (6°" (), 67" (u)))"/? < T lle™ (p) ) x
e
(note we lose a factor of 'y;

/2 relative to the symmetric case); similarly, g'/?(u) (& (29 (u), éd“(u)))l/2 <
395 le® ()]l x . The desired result then directly follows from the definition of Ay (1) and our hypothesis

on Js(u) — sn ()l

Finally, turning to computational issues, we note that the off-line/on—line decomposition described
in Section 4.1 for compliant symmetric problems directly extends to the noncompliant, nonsyminetric
case — except that we must compute the norm of both the primal and dual “modified errors,” with a
concomitant doubling of computational effort.
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5.1.3 Method II 4 Posteriori Error Estimators

We discuss here the extension of Method IT of Section 4.2 to noncompliant outputs and nonsymmetric
operators.

To begin, we set M > N, M even, and introduce a parameter sample Spr/2 = {01, ..., piagy2} and as-
sociated “integrated” reduced-basis approximation space Way = span{u(pm), ¥(tm), m =1,..., M/2}.
We first find uas(pe) € Wap such that a{uar(pe),v5pe) = f(v), Yu € Wiy, we then evaluate sp () =
(uar(0)); and finally, we compute our upper and lower output estimators as

snai) = SN(H)JF%(SM—SN)i%AN,M(H), (45)
Avarls) = leasle) ~ sn(l, (46)

for 7 € (0,1). The effectivity of the approximation is defined as

A
oy m(p) = | N (1)

S0~ sl (47)

We shall again only consider M = 2N.

As in Section 4.2, we would like to prove that 1 < nyon () < Const for sufficiently large N; and, as
in Section 4.2, we must again make the hypothesis (29). We first consider the lower effectivity incquality
(bounding property), and prove that

syan (1) < s(p) < s§ (), as N — oo (48)

In particular, simple algebraic manipulations yield

B ) e () — san 1 san (i) = sn(p)
syan() = slw) = o — _EMNI N () = san ()] X {%(1 Cewaw) — 1 sawl) < sn(n) (49)
. _ 1 S B ) Ll—enan) =1 son(p) 2 snin) 5
shan(n) = s(u)+ [pr— €N,2N| n(p) = san(p)] x {1 san (1) < sw (). (50)

The desired result then directly follows from our hypothesis on ex,2x5, (29), and the range of 1.
The proof for the upper effectivity inequality (sharpness property) parallels the derivation of Sec-
tion 4.2.2. In particular, we write

Lisony —sn] Lisaw —s+s—sn|
= £ =7 51
T]N,2N(:u’) IS — SNl IS . SNI () )
1
= ;ll —enanl; (52)

from our hypothesis (29) we may thus conclude that 2N (i) — % as N — oo. Note in the noncom-
pliant, nonsymmetric case we can make no stronger statement.

We demonstrate our effectivity claims in Table 3, in which we present the error, bound gap, and
effectivity for the noncompliant output (s%(n), average stress) of the truss example of Section 2.2.2;
the results tabulated correspond to the choice 7 = 1/2. We clearly obtain bounds for all N; and the
effectivity rather quickly approaches 1/7 (for N > 120, nn,2n5 remains fixed at 1/7 = 2.0).

5.2 Eigenvalue Problems

We next consider the extension of our approach to symmetric positive definite eigenvalue problems.
The eigenvalues of appropriately defined partial-differential-equation eigenproblems convey critical in-
formation about a physical system; in linear clasticity, the critical buckling load; in dynamic analysis
of structures, the resonant modes; in conduction heat transfer, the equilibrium timescales. Solution
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N 1 s() = sv()l/s(u) | Anan()/s(0) T nvan ()
20 235 x 1072 4.67 x 102 1.99
40 1.74 x 10~* 3.19 x 104 1.83
60 5.59 x 1075 1.06 x 10—4 1.90
80 1.44 x 1075 273 x 1075 1.89
100 7.45 x 1076 1.40 x 1078 1.88

Table 3: Error, error bound (Method 11), and effectivity as a function of N, at a particular representative
point y € D, for the truss problem (noncompliant output).

of large-scale eigenvalue problems is computationally intensive: the reduced-basis method is thus very
attractive.
The abstract statement of our eigenvalue problem is: find (u;(p), \(1)) € X x R, i =1,..., such
that
a{wi(p), v p) = Mi()m{ui(u), v p), Yo € X, and m(ui(p), ui(w)) = 1. (53)

Here a is the continuous, coercive, symmetric form introduced earlier, and m is (say) the L? inner
product over 2. The assumptions on a and m imply the eigenvalues Ai(p) will be real and positive.
We order the eigenvalues (and corresponding eigenfunctions u;) such that 0 < X, (1) <o) <...; we
shall assumie that Ay (u) and Az(p) are distinet. We suppose that our output of interest is the minimum
eigenvalue,

s(u) = Ar(p); (54)

other outputs may also be considered.
Following [11], we present here a reduced-basis predictor and a Method I error estimator for sym-
metric positive-definite eigenvalue problems; we also briefly describe the simpler Method II approach.

5.2.1 Reduced-Basis Approximation

We sample - - randomly or log-randomly -— our design space D to create the parameter sample Sy =
{11, unye}s we then introduce the reduced-basis space Wy = span{ug (1), ua(p1), . . Sy (teny2),
ua{gens2)}, where we recall that uy () and ue(p) are the eigenfunctions associated with the first (small-
est) and second eigenvalues Ay (u) and Ap(u), respectively. Note that Wy has good approximation
properties both for the first and second lowest eigenfunctions, and hence eigenvalues; this is required
by the Method I error estimator to be presented below. Our reduced-order approximation is then: find
(un (p), Ani(p)) € Wy xR, 1 =1,..., N, such that

alun (1), vip) = An (ymlun i(u),viu), Yo € Wy, and m(uy i(p), un (1)) = 1; (55)

the output approximation is then sy {u) = Ay 1 {u).
The formulation admits an on-line/off-line decomposition [11] very similar to the approach described
for equilibrium problems in Section 3.

5.2.2 Method I A Posterior: Error Estimators

As before, we assume that we are given a positive function g(u) : D — R, and a continuous, coercive,
symmetric bilinear form a(w,v) : X x X — R, that satisfy the inequality (16). We then find é(u) € X
such that

g(ma(é(w),v) = Pnvam(un 1 (1), v p) = alun 1 (), v; )], Y € X, (56)

in which the right-hand side is the eigenproblem equivalent of the residual. We then evaluate our
estimators as
sh() =Avilw),  sy(u) = An1(e) — An(p),
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N TG = An a0l TAn G/ Aue) T v
10 1.19 x 1072 6.66 x 1072 5.63
20 1.08 x 1073 7.10 x 1073 6.65
30 6.20 x 1074 3.19 x 1073 5.17
40 1.72 x 1074 1.55 x 1073 9.44
50 3.47 x 107° 406 x 107¢ | 11.74

Table 4 Error, error bound (Method 1), and effectivities as a function of N, at a particular representative
point ;¢ € D, for the thermal fin eigenproblen.

A = 2 a6, ),

T8(p)
where §(u) = 1 — i_% and 7 € (0,1). The cffectivity is defined as 1y (n) = o ﬁf)’f'i),(m‘

We now consider the lower and upper effectivity inequalities. As regards the lower effectivity in-
equality (bounding property), we of course obtain st (1) = A(p), ¥ N. The difficult result is the lower
bound: it can be proven [11] that there exists an N*(Syya,u) such that sy(p) < Ai(u), VN > N*.
In practice, N* = 1, due to the good (theorctically motivated) choice for §(u); there is thus very little
uncertainty in our {asymptotic) bounds. We also prove in [11] a result related to the upper effectiv-
ity inequality (sharpness property); in, practice, very good effectivities are obtained. To demonstrate
these claims we consider the eigenvalue problem associated with (the homogenous version) of our two-
dimensional thermal fin example of Section 2.2.1. We present in Table 5.2.2 the error, error bound, and
effcctivity as a function of N at a particular point p € D. We observe rapid convergence, bounds for
all N, and good cffectivities.

Finally, we note that our output estimator admits an off-line/on-line decomposition similar to
that for equilibrium problems; the additional terms in {56) arc readily treated through our affine
expansion/linear superposition procedure.

5.2.3 Method IT A Posteriori Error Estimators

For Method 11, we no longer require an estimate for the second eigenvalue. We may thus define Sy =
{11, .., un}, Wn = span{uy(p),1 = 1,...,N}, and (for M = 2N) San = {u1,...,p2n} D Sw,
Wan = span{uy{ui),i=1,... ,2N} D Wy. The reduced basis approximation now takes the form (53),
yielding sy (u) = Av 1(u) and (for N — 2N) son(p) = Aon 1(). Our estimators are then given by

51+V,2N(U) = Ani(n), SyaN = Av1(p) — Anan (i),

%(SN(#) ~ san(u)) (57)

il

Anan(p)

for 7 € (0,1). The effectivity nn 2n (1) is defined as for Method L.

For the lower effectivity inequality (bounding property), we of course retain sfv'gN(p) > A{p), VN.
We also readily derive sy oy (1) = A1 —(An 1~ M)(2(1—en2n)—1); under our hypothesis (29), we thus
obtain asymptotic bounds as N — oo. For the upper effectivity inequality (sharpness property), we
directly obtain nyanv = %(1 —en,2n). By variational arguments it is readily shown that 0 < ey 2y < 1t
we thus conclude that 0 < nyany < %, ¥N. Additionally, under hypothesis (29), we deduce that
NNAN — % as N — co.

5.3 Further Generalizations

In this section we briefly describe several additional extensions of the methodology. In each case we
focus on the essential new ingredient; further details (in most cases) may be found in the referenced
literature.
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5.3.1 Noncoercive Linear Operators

The archetypical noncoercive linear equation is the Helmholtz, or reduced-wave, equation; many (c.g.,
inverse scattering) applications of this equation arise, for example, in acoustics and electromagnetics.
The essential new mathematical ingredient is the loss of coercivity of a. In particular, well -posedness
is now ensured only by the inf-sup condition: there exists positive So, B(u), such that

0 < By < B(p) = inf sup alw, vi )
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Two numerical difficulties arise due to this “weaker” stability condition.

The first difficulty is preservation of the inf-sup stability condition for finite dimensional approxima-
tion spaces. To wit, although in the coercive case restriction to the space Wy actually increases stability,
in the noncoercive case restriction to the space Wy can easily decrease stability: the relevant supremiz-
ers may not be adequately represented. Loss of stability can, in turn, lead to poor approximations — the
inf-sup parameter enters in the denominator of the a prior convergence result. The second numerical
difficulty is estimation of the inf-sup parameter, which for noncoercive problems plays the role of g(u)
in Method I a posteriort error estimation techniques. In particular, #(;1) can not typically be deduced
analytically, and thus must be evaluated (via an eigenvalue formulation) as part of the reduced-basis
approximation. Qur resolution of both these difficulties involves two elements [17): first, we consider
projections other than standard Galerkin; and second, we consider “enriched” approximation spaces.

In one approach [17], we pursue a minimum-residual projection: the (low-dimensional) infimizing
space contains both the solution u(u) and also the inf-sup infimizer at the p, sample points; and the
(high-dimensional) supremizing space is taken to be X. Stability is ensured and rigorous (sharp) error
bounds are obtained — though technically the bounds are only asymptotic due to the approximation of
the inf-sup parameter; and, despite the presence of X, the on-line complexity remains independent of
the dimension of X — as in Section 3.3, we exploit affine parameter dependence and linear superposition
to precompute the necessary inversions. In a second suite of much simpler and more general approaches
(sce (17] for one example in the symmetric casc), we exploit minimum-residual or Petrov-Galerkin pro-
jections witl infimizer-supremizer enriched, but still very low-dimensional, infimizing and supremizing
spaces. Plausible but not yet completely rigorous arguments, and empirical evidence, suggest that
stability is ensured and rigorous asymptotic (and sharp) error bounds are obtained.

In [17] we focus entirely on Method I a posteriori error estimator procedures; but Method II tech-
niques are also appropriate. In particular, Method II approaches do not require accurate estimation of
the inf-sup parameter; we thus need be concerned only with stability in designing our reduced-basis
spaces.

5.3.2 Parabolic Partial Differential Equations

The next extension considered is the treatment of parabolic partial differential equations of the form
m(us, v; i) = a(u, v; 1); typical examples are time-dependent problems such as unsteady heat conduction
— the “heat” or “diffusion” equation. The essential new ingredient is the presence of the time variable,
t.

The reduced-basis approximation and error estimator procedures are similar to those for noncompli-
ant nonsymmetric problems, except that we now include the time variable as an additional paramcter.
Thus, as in certain other time-domain model-order-reduction methods [4, 25], the basis functions are
“snapshots” of the solution at selected time instants; however, in our case, we construct an ensemble of
such series corresponding to different points in the non-time parameter domain D. For rapid conver-
gence of the output approximation, the solutions to an adjoint problem — which evolves backward in
time — must also be included in the reduced-basis space.

For the temporal discretization method, many possible choices are available. The most appropriate
method — although not the only choice — is the discontinuous Galerkin method [13]. The varia-
tional origin of the discontinuous Galerkin approach leads naturally to rigorous output bounds for
Method I a posteriori error estimators; the Method 11 approach is also directly applicable. Under our
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affine assumption, off- line/on-line decompositions can be readily crafted; the complexity of the on-line
stage (calculation of the output predictor and associated hound gap) is, as before, independent of the
dimension of X.

5.3.3 Locally Non—Affine Parameter Dependence

An important restriction of our methods is the assumption of affine parameter dependence. Although
many property, boundary condition, load, and even geometry variations can indeed be expressed in the
required form (2) for reasonably small Q, there are many problems — for example, general boundary
shape variations — which do not admit such a representation. One simple approach to the treatment
of this more difficult class of non-affine problems is (i) in the off-line stage, store the ¢, = ufjty,), and
(i) in the on-line stage, directly evaluate the reduced-basis stiffness matrix as a((;,(;, i¢). Unfortu-
nately, the operation count (respectively, storage) for the on-line stage will now scale as O(N?dim(X))
(respectively, O(N dim(X)), where dim(X) is the dimension of the truth (very fine) finite element
approximation space: the resulting method may no longer be competitive with advanced iterative tech-
niques; and, in any event, “real-time” response may be compromised.

We prefer an approach whicl is slightly less general but potentially much more eflicient. In partic-
ular, we note that in many cases — for example, boundary geometry modification -~ the non-affine
parametric dependence can be restricted to a small subdomain of Q, ©7;. We can then express our
bilinear form a as an affine/non-affine sum,

o(w, v; 1) = ar{w,v; u) + ags (w,v; ). (59)

Here a;, defined over 2y — the majority of the domain — is affinely dependent on g; and ary, defined
over {1;; — a small portion of the domain — is not affinely dependent on p. It immediately follows that
the reduced-basis stiffness matrix can be expressed as the sum of two stiffness matrices corresponding
to contributions from a; and aj; respectively; that the stiffness matrix associated with a; admits the
usual on-line/off-line decomposition described in Section 3.3; and that the stiffness matrix associated
with asy requires storage (and inner product evaluation) only of CilQ” (¢; restricted to Qjy). The
non-affine contribution to the on-line computational complexity thus scales only as O(N? dim(X|q,,)),
where dim(X|q,,) refers (in practice) to the number of finite-clement nodes located within {y; — often
extremely small. We thus recover a method that is (almost) independent of dim(X), though clearly the
on-line code will be more complicated than in the purely affine case.

In the above we focus on approximation. As regards a posteriori error estimation, the non--affine
dependence of a (even locally) precludes the precomputation and linear superposition strategy required
by Method I (unless domain decomposition concepts are exploited [12]}; however, Method II directly
extends to the locally non-affine case.
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